
1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 1/17

Allocating Dynamic Memory with malloc

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 2/17

In [1]:

Successfully allocated a 512 byte string
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Successfully allocated int_values[1000]
Successfully allocated float_values[25]

#include <stdio.h>
#include <stdlib.h>

void main(void)
 {
 char *string;
 int *int_values;
 float *float_values;

 if ((string = (char *) malloc(512)))
 {
 printf("Successfully allocated a 512 byte string\n");
 int i;
 char letter;

 for (i = 0, letter = 'A'; letter <= 'Z'; letter++, i++)
 string[i] = letter;

 string[i] = '\0';

 printf("%s\n", string);
 free(string);
 }
 else
 printf("Error allocating string\n");

 if ((int_values = (int *) malloc(1000 * sizeof(int))) != NULL)
 {
 printf("Successfully allocated int_values[1000]\n");
 free(int_values);
 }
 else
 printf("Error allocating int_values[1000]\n");

 if ((float_values = (float *) malloc(25 * sizeof(float))) != NULL)
 {
 printf("Successfully allocated float_values[25]\n");
 free(float_values);
 }
 else
 printf("Error allocating float_values[25]\n");
 }

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 3/17

Releasing Memory No Longer Needed
In [2]:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

#include <stdio.h>
#include <stdlib.h>

int main(void)
 {
 char *string;

 if ((string = (char *) malloc(512)) == NULL)
 printf("Error allocating string\n");
 else
 {
 int i;
 char letter;

 for (i = 0, letter = 'A'; letter <= 'Z'; letter++, i++)
 string[i] = letter;

 string[i] = '\0';

 printf("%s\n", string);

 free(string);
 }
 }

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 4/17

Allocating Dynamic Memory with calloc
In [3]:

Successfully allocated a 512 byte string
Successfully allocated int_values[1000]
Successfully allocated float_values[25]

#include <stdio.h>
#include <stdlib.h>

void main(void)
 {
 char *string;
 int *int_values;
 float *float_values;

 if ((string = (char *) calloc(512, sizeof(char))))
 printf("Successfully allocated a 512 byte string\n");
 else
 printf("Error allocating string\n");

 if ((int_values = (int *) calloc(1000, sizeof(int))) != NULL)
 printf("Successfully allocated int_values[1000]\n");
 else
 printf("Error allocating int_values[100]\n");

 if ((float_values = (float *) calloc(25, sizeof(float))) != NULL)
 printf("Successfully allocated float_values[25]\n");
 else
 printf("Error allocating float_values[25]\n");

 free(string);
 free(int_values);
 free(float_values);
 }

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 5/17

Creating a Singly-Linked List

In [4]:

1 2 3 4 5 6 7 8 9

#include <stdio.h>
#include <stdlib.h>

struct Node {
 int value;
 struct Node *next;
} ;

int main(void)
{
 struct Node *start = (struct Node *) calloc(1, sizeof(struct Node));
 start->next = NULL;
 struct Node *current_node = start;

 for (int i = 1; i < 10; ++i)
 {
 current_node->next = (struct Node *) calloc(1, sizeof(struct Node));
 current_node = current_node->next;
 current_node->next = NULL;
 current_node->value = i;
 }

 current_node = start->next;
 while (current_node)
 {
 printf("%d ", current_node->value);
 current_node = current_node->next;
 }
}

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 6/17

Inserting a Node into a Singly-Linked List

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 7/17

In [5]:

1 2 3 4 5 500 6 7 8 9

#include <stdio.h>
#include <stdlib.h>

struct Node {
 int value;
 struct Node *next;
} ;

int main(void)
{
 struct Node *start = (struct Node *) calloc(1, sizeof(struct Node));
 start->next = NULL;
 struct Node *current_node = start;

 for (int i = 1; i < 10; ++i)
 {
 current_node->next = (struct Node *) calloc(1, sizeof(struct Node));
 current_node = current_node->next;
 current_node->next = NULL;
 current_node->value = i;
 }

 // insert value 500 after node with value 5
 current_node = start->next;
 while (current_node->value != 5)
 current_node = current_node->next;

 struct Node *new_node = (struct Node *) calloc(1, sizeof(struct Node));
 new_node->next = current_node->next;
 new_node->value = 500;
 current_node->next = new_node;

 current_node = start->next;
 while (current_node)
 {
 printf("%d ", current_node->value);
 current_node = current_node->next;
 }

}

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 8/17

Deleting a Node from a Singly-Linked List

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 9/17

In [6]:

1 2 3 4 6 7 8 9

#include <stdio.h>
#include <stdlib.h>

struct Node {
 int value;
 struct Node *next;
} ;

int main(void)
{
 struct Node *start = (struct Node *) calloc(1, sizeof(struct Node));
 start->next = NULL;
 struct Node *current_node = start;

 for (int i = 1; i < 10; ++i)
 {
 current_node->next = (struct Node *) calloc(1, sizeof(struct Node));
 current_node = current_node->next;
 current_node->next = NULL;
 current_node->value = i;
 }

 // Delete node with value 5
 current_node = start->next;
 struct Node *previous_node = start;

 while (current_node->value != 5)
 {
 previous_node = current_node;
 current_node = current_node->next;
 }

 previous_node->next = current_node->next;
 free(current_node);

 current_node = start->next;
 while (current_node)
 {
 printf("%d ", current_node->value);
 current_node = current_node->next;
 }

}

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 10/17

Using a Doubly-Linked List

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 11/17

In [7]:

1 2 3 4 5 500 6 7 8 9

#include <stdio.h>
#include <stdlib.h>

struct Node {
 int value;
 struct Node *next;
 struct Node *previous;
} ;

int main(void)
{
 struct Node *start = (struct Node *) calloc(1, sizeof(struct Node));
 start->next = NULL;
 start->previous = NULL;
 struct Node *current_node = start;

 for (int i = 1; i < 10; ++i)
 {
 current_node->next = (struct Node *) calloc(1, sizeof(struct Node));
 current_node->next->previous = current_node;
 current_node = current_node->next;
 current_node->next = NULL;
 current_node->value = i;
 }

 // insert value 500 after node with value 5
 current_node = start->next;
 while (current_node->value != 5)
 current_node = current_node->next;

 struct Node *new_node = (struct Node *) calloc(1, sizeof(struct Node));
 new_node->next = current_node->next;
 new_node->previous = current_node;
 new_node->value = 500;
 current_node->next = new_node;

 current_node = start->next;
 while (current_node)
 {
 printf("%d ", current_node->value);
 current_node = current_node->next;
 }
}

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 12/17

Deleting a Value from a Doubly-Linked List

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 13/17

In [8]:

1 2 3 4 6 7 8 9

#include <stdio.h>
#include <stdlib.h>

struct Node {
 int value;
 struct Node *next;
 struct Node *previous;
} ;

int main(void)
{
 struct Node *start = (struct Node *) calloc(1, sizeof(struct Node));
 start->next = NULL;
 start->previous = NULL;
 struct Node *current_node = start;

 for (int i = 1; i < 10; ++i)
 {
 current_node->next = (struct Node *) calloc(1, sizeof(struct Node));
 current_node->next->previous = current_node;
 current_node = current_node->next;
 current_node->next = NULL;
 current_node->value = i;
 }

 // delete the value 5
 current_node = start->next;
 while (current_node->value != 5)
 current_node = current_node->next;

 if (current_node->next != NULL)
 current_node->next->previous = current_node->previous;
 if (current_node->previous != NULL)
 current_node->previous->next = current_node->next;
 free(current_node);

 current_node = start->next;
 while (current_node)
 {
 printf("%d ", current_node->value);
 current_node = current_node->next;
 }
}

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 14/17

Creating a Binary Tree

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 15/17

In [9]:

1
2
3

#include <stdio.h>
#include <stdlib.h>

struct Node {
 int value;
 struct Node *right;
 struct Node *left;
} ;

void insert_value(struct Node **node, int value)
{
 struct Node *new_node = NULL;

 if (*node == NULL)
 {
 new_node = (struct Node *) calloc(1, sizeof(struct Node));
 new_node->value = value;
 new_node->left = NULL;
 new_node->right = NULL;
 *node = new_node;
 return;
 }

 if (value < (*node)->value)
 insert_value(&(*node)->left, value);
 else
 insert_value(&(*node)->right, value);
}

void display_tree(struct Node *node)
{
 if (node)
 {
 display_tree(node->left);
 printf("%d\n", node->value);
 display_tree(node->right);
 }
}

int main(void)
{
 struct Node *root = NULL;

 insert_value(&root, 3);
 insert_value(&root, 1);
 insert_value(&root, 4);
 insert_value(&root, 2);
 insert_value(&root, 5);

 display_tree(root);
}

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 16/17

What To Learn Next

4
5

Congratulations on learning C programming. I always say learning your first
language is time consuming, learning the second language takes half that amount
of time and learning your third takes half of that.

You now have a great foundation to learn and more importantly appreciate C++
programming. I recommend that you should take my C++ course followed by my C#
course.

Good luck with your programming endeavors.

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 17/17

