1/31/2021 C Programming-Dynamic Data Structures

Hands On C
500 Working Programs

Dynamic Data Structures

Allocating Dynamic Memory with malloc

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 117

1/31/2021 C Programming-Dynamic Data Structures

In [1]: #include <stdio.h>
#include <stdlib.h>

void main(void)
{
char *string;
int *int_values;
float *float_values;

if ((string = (char *) malloc(512)))
{
printf("Successfully allocated a 512 byte string\n");
int i;
char letter;

for (i = 0, letter = 'A'; letter <= 'Z'; letter++, i++)
string[i] = letter;

string[i] = "\0';

printf("%s\n", string);
free(string);

}

else
printf("Error allocating string\n");

if ((int_values = (int *) malloc(1000 * sizeof(int))) != NULL)

{
printf("Successfully allocated int values[1000]\n");
free(int_values);
}
else

printf("Error allocating int_values[1@00]\n");

if ((float_values = (float *) malloc(25 * sizeof(float))) != NULL)
{
printf("Successfully allocated float values[25]\n");
free(float_values);
¥
else
printf("Error allocating float_values[25]\n");

Successfully allocated a 512 byte string
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Successfully allocated int_values[1000]
Successfully allocated float_values[25]

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb

2017

1/31/2021 C Programming-Dynamic Data Structures

Releasing Memory No Longer Needed

In [2]: #include <stdio.h>
#include <stdlib.h>

int main(void)
{
char *string;
if ((string = (char *) malloc(512)) == NULL)

printf("Error allocating string\n");
else

{
int i;
char letter;

for (i = 0, letter = '"A'; letter <= 'Z'; letter++, i++)
string[i] = letter;

string[i] = "\@0';
printf("%s\n", string);

free(string);

ABCDEFGHIJKLMNOPQRSTUVWXYZ

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb

3/17

1/31/2021

In [3]:

C Programming-Dynamic Data Structures

Allocating Dynamic Memory with calloc

#include <stdio.h>
#include <stdlib.h>

void main(void)

{

char *string;
int *int_values;
float *float_values;

if ((string = (char *) calloc(512, sizeof(char))))
printf("Successfully allocated a 512 byte string\n");
else
printf("Error allocating string\n");

if ((int_values = (int *) calloc(1000, sizeof(int))) != NULL)
printf("Successfully allocated int_values[1000]\n");

else
printf("Error allocating int_values[100]\n");

if ((float _values = (float *) calloc(25, sizeof(float))) != NULL)
printf("Successfully allocated float values[25]\n");

else
printf("Error allocating float_values[25]\n");

free(string);
free(int_values);
free(float_values);

Successfully allocated a 512 byte string
Successfully allocated int_values[1000]
Successfully allocated float_values[25]

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb

4/17

1/31/2021 C Programming-Dynamic Data Structures

Creating a Singly-Linked List

NULL

L
i
C

Start

In [4]: #include <stdio.h>
#include <stdlib.h>

struct Node {
int value;
struct Node *next;

}s
int main(void)
{
struct Node *start = (struct Node *) calloc(l, sizeof(struct Node));
start->next = NULL;
struct Node *current_node = start;
for (int i = 1; i < 10; ++i)
{
current_node->next = (struct Node *) calloc(l, sizeof(struct Node));
current_node = current_node->next;
current_node->next = NULL;
current_node->value = i;
}
current_node = start->next;
while (current_node)
{
printf("%d ", current_node->value);
current_node = current_node->next;
}
}

123456789

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 5117

1/31/2021 C Programming-Dynamic Data Structures

Inserting a Node into a Singly-Linked List

L > — — — — —> —> —> —> N—ULL

Start 500

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 6/17

1/31/2021 C Programming-Dynamic Data Structures

In [5]: #include <stdio.h>
#include <stdlib.h>

struct Node {
int value;
struct Node *next;

yos
int main(void)
{
struct Node *start = (struct Node *) calloc(l, sizeof(struct Node));
start->next = NULL;
struct Node *current_node = start;
for (int i = 1; i < 10; ++i)
{
current_node->next = (struct Node *) calloc(1l, sizeof(struct Node));
current_node = current_node->next;
current_node->next = NULL;
current_node->value = i;
}
// insert value 500 after node with value 5
current_node = start->next;
while (current_node->value != 5)
current_node = current_node->next;
struct Node *new node = (struct Node *) calloc(l, sizeof(struct Node));
new_node->next = current_node->next;
new_node->value = 500;
current_node->next = new_node;
current_node = start->next;
while (current_node)
{
printf("%d ", current_node->value);
current_node = current_node->next;
}
}

123455006789

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb

7717

1/31/2021 C Programming-Dynamic Data Structures

Deleting a Node from a Singly-Linked List

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 8/17

1/31/2021 C Programming-Dynamic Data Structures

In [6]: #include <stdio.h>
#include <stdlib.h>

struct Node {
int value;
struct Node *next;

}s
int main(void)
{
struct Node *start = (struct Node *) calloc(l, sizeof(struct Node));
start->next = NULL;
struct Node *current_node = start;
for (int i = 1; i < 10; ++i)
{
current_node->next = (struct Node *) calloc(l, sizeof(struct Node));
current_node = current_node->next;
current_node->next = NULL;
current_node->value = i;
}
// Delete node with value 5
current_node = start->next;
struct Node *previous_node = start;
while (current_node->value != 5)
{
previous node = current_node;
current_node = current_node->next;
}
previous_node->next = current_node->next;
free(current_node);
current_node = start->next;
while (current_node)
{
printf("%d ", current_node->value);
current_node = current_node->next;
}
}

12346789

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb

917

1/31/2021 C Programming-Dynamic Data Structures

Using a Doubly-Linked List

NULL -

A

A

Start

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb

Y

A

Y

NULL

10/17

1/31/2021 C Programming-Dynamic Data Structures

In [7]: #include <stdio.h>
#include <stdlib.h>

struct Node {
int value;
struct Node *next;
struct Node *previous;

sizeof(struct Node));

}s
int main(void)
{
struct Node *start = (struct Node *) calloc(l, sizeof(struct Node));
start->next = NULL;
start->previous = NULL;
struct Node *current_node = start;
for (int 1 = 1; i < 10; ++i)
{
current_node->next = (struct Node *) calloc(l, sizeof(struct Node));
current_node->next->previous = current_node;
current_node = current_node->next;
current_node->next = NULL;
current_node->value = i;
}
// insert value 500 after node with value 5
current_node = start->next;
while (current_node->value != 5)
current_node = current_node->next;
struct Node *new_node = (struct Node *) calloc(1l,
new_node->next = current_node->next;
new_node->previous = current_node;
new_node->value = 500;
current_node->next = new_node;
current_node = start->next;
while (current_node)
{
printf("%d ", current_node->value);
current_node = current_node->next;
}
}

1234525006789

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb

1117

1/31/2021 C Programming-Dynamic Data Structures

Deleting a Value from a Doubly-Linked List

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 12117

1/31/2021 C Programming-Dynamic Data Structures

In [8]: #include <stdio.h>
#include <stdlib.h>

struct Node {
int value;
struct Node *next;
struct Node *previous;

int main(void)

struct Node *start = (struct Node *) calloc(l, sizeof(struct Node));

start->next = NULL;
start->previous = NULL;
struct Node *current_node = start;

for (int 1 = 1; i < 10; ++i)

{

current_node->next = (struct Node *) calloc(l, sizeof(struct Node));

current_node->next->previous = current_node;
current_node = current_node->next;
current_node->next = NULL;
current_node->value = i;

}

// delete the value 5

current_node = start->next;

while (current_node->value != 5)
current_node = current_node->next;

if (current_node->next != NULL)

current_node->next->previous = current_node->previous;

if (current_node->previous != NULL)
current_node->previous->next = current_node->next;
free(current_node);

current_node = start->next;
while (current_node)

{

printf("%d ", current_node->value);
current_node = current_node->next;

12346789

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb

13/17

1/31/2021 C Programming-Dynamic Data Structures

Creating a Binary Tree

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 1417

1/31/2021 C Programming-Dynamic Data Structures

In [9]: #include <stdio.h>
#include <stdlib.h>

struct Node {
int value;
struct Node *right;
struct Node *left;

}s
void insert_value(struct Node **node, int value)
{
struct Node *new node = NULL;
if (*node == NULL)
{
new_node = (struct Node *) calloc(1l, sizeof(struct Node));
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
*node = new_node;
return;
}
if (value < (*node)->value)
insert_value(&(*node)->left, value);
else
insert_value(&(*node)->right, value);
}
void display_tree(struct Node *node)
{
if (node)
{
display tree(node->left);
printf("%d\n", node->value);
display tree(node->right);
}
}
int main(void)
{
struct Node *root = NULL;
insert_value(&root, 3);
insert_value(&root, 1);
insert_value(&root, 4);
insert_value(&root, 2);
insert_value(&root, 5);
display tree(root);
}
1
2
3

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 1517

1/31/2021 C Programming-Dynamic Data Structures

What To Learn Next

Congratulations on learning C programming. I always say learning your first
language is time consuming, learning the second language takes half that amount
of time and learning your third takes half of that.

You now have a great foundation to learn and more importantly appreciate C++

programming. I recommend that you should take my C++ course followed by my C#
course.

Good luck with your programming endeavors.

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 16/17

1/31/2021 C Programming-Dynamic Data Structures

localhost:8888/notebooks/C Programming-Dynamic Data Structures.ipynb 17117

